On connectivity of consecutive-d digraphs

نویسندگان

  • Ding-Zhu Du
  • D. Frank Hsu
  • Hung Q. Ngo
  • G. W. Peck
چکیده

The concept of a consecutive-d digraph was proposed by Du, Hsu and Hwang as a generalization of de Bruijn digraphs, Kautz digraphs, and their generalizations given by Imase and Itoh and Reddy, Pradhan and Kuhl. In this paper we determine the connectivity of consecutive-d digraphs and study how to modify consecutive-d digraphs to reach maximum connectivity. Our results will generalize and improve several existing results on the connectivity of de Bruijn digraphs, Kautz digraphs and Imas-Itoh digraphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficient conditions on the zeroth-order general Randic index for maximally edge-connected digraphs

Let D be a digraph with vertex set V(D) .For vertex v V(D), the degree of v, denoted by d(v), is defined as the minimum value if its out-degree  and its in-degree . Now let D be a digraph with minimum degree  and edge-connectivity If  is real number, then the zeroth-order general Randic index is defined by   .  A digraph is maximally edge-connected if . In this paper we present sufficient condi...

متن کامل

Twin signed total Roman domatic numbers in digraphs

Let $D$ be a finite simple digraph with vertex set $V(D)$ and arcset $A(D)$. A twin signed total Roman dominating function (TSTRDF) on thedigraph $D$ is a function $f:V(D)rightarrow{-1,1,2}$ satisfyingthe conditions that (i) $sum_{xin N^-(v)}f(x)ge 1$ and$sum_{xin N^+(v)}f(x)ge 1$ for each $vin V(D)$, where $N^-(v)$(resp. $N^+(v)$) consists of all in-neighbors (resp.out-neighbors) of $v$, and (...

متن کامل

The Italian domatic number of a digraph

An {em Italian dominating function} on a digraph $D$ with vertex set $V(D)$ is defined as a function$fcolon V(D)to {0, 1, 2}$ such that every vertex $vin V(D)$ with $f(v)=0$ has at least two in-neighborsassigned 1 under $f$ or one in-neighbor $w$ with $f(w)=2$. A set ${f_1,f_2,ldots,f_d}$ of distinctItalian dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vi...

متن کامل

A note on the Roman domatic number of a digraph

Roman dominating function} on a digraph $D$ with vertex set $V(D)$ is a labeling$fcolon V(D)to {0, 1, 2}$such that every vertex with label $0$ has an in-neighbor with label $2$. A set ${f_1,f_2,ldots,f_d}$ ofRoman dominating functions on $D$ with the property that $sum_{i=1}^d f_i(v)le 2$ for each $vin V(D)$,is called a {em Roman dominating family} (of functions) on $D$....

متن کامل

The Roman domination and domatic numbers of a digraph

A Roman dominating function (RDF) on a digraph $D$ is a function $f: V(D)rightarrow {0,1,2}$ satisfying the condition that every vertex $v$ with $f(v)=0$ has an in-neighbor $u$ with $f(u)=2$. The weight of an RDF $f$ is the value $sum_{vin V(D)}f(v)$. The Roman domination number of a digraph $D$ is the minimum weight of an RDF on $D$. A set ${f_1,f_2,dots,f_d}$ of Roman dominating functions on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 257  شماره 

صفحات  -

تاریخ انتشار 2002